

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Carbon-13 Isotope Effects in ^{13}C NMR Spectra of Some Carbonyl Substituted Benzenes

Predrag Vujanić^a; Zlatko Meić^a; Dražen Vikić-Topić^b

^a Ruder Bošković Institute, Zagreb, Croatia ^b Department of Biochemistry and Molecular Biology, Mayo Foundation, Rochester, MN, USA

To cite this Article Vujanić, Predrag , Meić, Zlatko and Vikić-Topić, Dražen(1995) 'Carbon-13 Isotope Effects in ^{13}C NMR Spectra of Some Carbonyl Substituted Benzenes', *Spectroscopy Letters*, 28: 3, 395 – 405

To link to this Article: DOI: 10.1080/00387019508009887

URL: <http://dx.doi.org/10.1080/00387019508009887>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

CARBON-13 ISOTOPE EFFECTS IN ^{13}C NMR SPECTRA OF SOME CARBONYL SUBSTITUTED BENZENES

Key words : ^{13}C NMR, ^{13}C isotope shifts, ^{13}C - ^{13}C coupling constants, ^{13}C -carbonyl labeled species

Predrag Vujanić¹, Zlatko Meić^{*1} and Dražen Vikić-Topic²

¹Ruđer Bošković Institute, POB 1016, Bijenička 54, 41000 Zagreb, Croatia

²Department of Biochemistry and Molecular Biology, Mayo Foundation, Rochester, MN 55905, USA

ABSTRACT

^{13}C isotope effects on ^{13}C chemical shifts in proton-decoupled NMR spectra of several ^{13}C -carbonyl substituted benzenes were determined and analyzed. For the first time intrinsic ^{13}C isotope effects over three bonds from the isotopically

*To whom correspondence should be addressed.

substituted site were determined. $^nJ(C,C)$ values for ^{13}C -carbonyl-benzaldehyde **1**, ^{13}C -carbonyl-benzoic acid **2**, ^{13}C -carbonyl-acetophenone **3** and ^{13}C -carbonyl-benzophenone **4** were determined and their differences interpreted in terms of molecular geometry and conformation. Both ^{13}C isotope effects and $^nJ(C,C)$ are solvent dependent.

INTRODUCTION

Contrary to deuterium isotope effects on ^{13}C chemical shifts, ^{13}C isotope effects are very small, primarily due to the low mass ratio upon the $^{13}C/^{12}C$ substitution. As a consequence the detection of ^{13}C isotope effects is not easy, and the review on isotope effects in NMR spectra¹ reflects the general lack of such data. Therefore additional data are still needed, especially from highly accurate measurements.

In order to throw more light on the nature of ^{13}C isotope effects and to measure accurately their values, we have investigated the following ^{13}C -carbonyl labeled molecules: benzaldehyde **1**, benzoic acid **2**, acetophenone **3** and benzophenone **4** (FIG. 1).

Isotope effects were determined according to the expression :

$$^n\Delta = \delta^{13}C(^{12}C) - \delta^{13}C(^{13}C)$$

where n denotes the number of bonds separating the isotopic substitution site and the observed nucleus, and δ is the chemical shift.

It was reported that both one-bond and two-bond ^{13}C effects in small-ring compounds were of the same order of magnitude²⁻⁴. According to the above definition most of ^{13}C isotope effects are positive (shielding). Just a few negative (deshielding) values were observed, like in ^{13}C -3-cyclobutanone (two-bond effect)², some cyclobutyl-derivatives with oxygen containing substituents (one-bond effects)³ and 2,4,6,-tri-methylpyrylium perchlorate⁵.

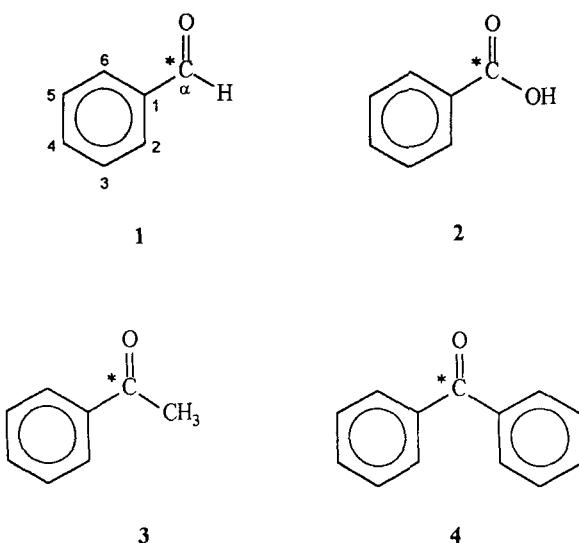


FIG. 1. Atom numbering in ^{13}C -carbonyl labeled systems.

EXPERIMENTAL

The compounds **1** (99% ^{13}C), **2** (99% ^{13}C) and **3** (99% ^{13}C) were purchased from Cambridge Isotope Laboratories, whereas the compound **4** (87% ^{13}C) was prepared in our laboratory⁶. The general procedure involved the addition of ^{13}C labeled benzoic acid to phenyllithium in refluxing ether under the stream of oxygen-free nitrogen for 24 hours. Column chromatography on silica gel, with a pentane-ether mixture as eluent, was used for purification of the compound. The ^{13}C content in **4** was determined from measurements at low ionizing energy using an Extrel FTMS 2001 DD mass spectrometer equipped with a 3T superconducting magnet⁶. NMR spectra were recorded with a Varian Gemini 300 NMR spectrometer operating at 75.4 MHz and a Varian VXR 500 S operating at 125.7 MHz. Sample concentrations were 20-30 mg/ml (0.1-0.3 M) and signals were referred to internal TMS. Deuterium from solvents was used as the internal lock.

signal. Digital resolution was better than 0.04 Hz per point. All spectra were recorded at 20°C in 5 mm NMR tubes. Carbon-carbon coupling constants were deduced from the proton decoupled spectra using Waltz 16 decoupling.

^{13}C isotope effects were determined from series of mixtures of isotopically labeled and unlabeled compounds prepared in different ratios (FIG. 2). Three different solvents were used: chloroform-d₁, acetone-d₆ and dimethylsulfoxide-d₆.

RESULTS AND DISCUSSION

The results obtained for the ^{13}C -carbonyl labeled molecules are presented in Table 1. One-bond effects in **1**, **2**, **3** and **4** are all positive, like the ^{13}C -carbonyl labeled carbon effect in cyclobutanone², where the C=O group is a part of the ring. However, $^1\Delta$ observed at the C-1 site has almost the same value in **1** and **2**, but different in **3** and **4**, which both are ketones (FIG.1). $^1\Delta$ at the methyl carbon in **3** has also been determined, the value being smaller than that observed for C-1 (Table 1). Furthermore, the negative effects over two bonds determined at C-2 carbons in **1** and **3** are almost twice as big as that in **4**. This is attributed to a considerable different molecular conformation of **4**, whereby ortho-proton repulsions of the two phenyl rings⁷ strongly affect the magnitude of this effect. This interactions can be neglected in **1** and are much smaller in **3**. No effect over two or three bonds has been observed in **2**, possibly due to hydrogen-bond dynamics. For the first time three-bond effects were detected here for **3** and **4**, both having the positive sign and similar values. Sign changes which occur (see Table 1) are also a characteristic of long range deuterium isotope effects found in these systems⁸ indicating the same origin of isotope effects.

Regardless of the fact that some long-range isotope effects can be rationalized assuming the substituent approach⁹, it is generally accepted that the origin of these effects lies in rovibrational changes upon the isotopic substitution^{10,11}. The same electronic potential for all isotopomers, imposed by the Born-Oppenheimer approximation, leaves a possibility to explain changes in shielding by slight changes

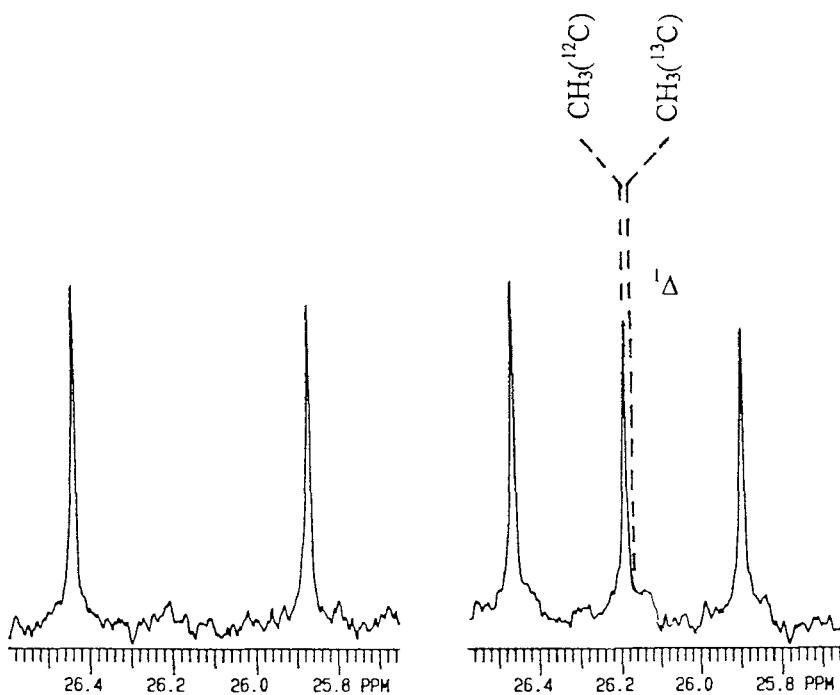


FIG. 2. Determination of ${}^1\Delta {}^{13}\text{C}$ (CH_3) in **3** from the spectra of a) 20 mg of the labeled compound and b) 20 mg of the labeled plus 10 mg of the unlabeled compound.

in average molecular geometry. Although all the molecules possess the same structural fragment, i. e the Ph-CO moiety, the point group symmetries are different: C_{2h} for benzoic acid dimer, C_2 for benzophenone, C_1 for acetophenone and C_s for benzaldehyde. Thus, it is rather likely that differences in eigenvectors of vibrational normal modes are the cause of different isotope effects.

The most significant solvent dependence of isotope effects, ${}^n\Delta {}^{13}\text{C}$, has been revealed for compounds **2** and **4** (Table 2). The largest variation in magnitude has been observed for ${}^1\Delta$ in **2**, where hydrogen bonding of the carbonyl groups is a sensitive probe for solvent effects.

TABLE 1

¹³C Isotope Effects ⁿΔ (ppb) on ¹³C Chemical Shifts in ¹³C-Carbonyl Labeled Compounds.

molecule	¹ Δ	² Δ	³ Δ
1	16.36 (0.07)	-1.32 (0.26)	
2	16.00 (0.30)		
3	C-1 14.24 (0.50)	-1.37 (0.04)	0.57 (0.22)
	CH ₃ 10.10 (0.70)		
4	13.40 (0.65)	-0.72 (0.11)	0.69 (0.08)

Standard errors are given in parentheses; Acetone-d₆ was used as a solvent.

TABLE 2

Solvent Effects on ¹³C Isotope Shifts in Compounds **2** and **4**.

molecule	¹ Δ	² Δ	³ Δ
2^a	15.14 (0.16)		
2^b	16.00 (0.30)		
2^c	15.63 (0.06)		
4^a	13.19 (0.31)	-0.62 (0.13)	0.64 (0.24)
4^b	13.40 (0.65)	-0.72 (0.11)	0.69 (0.08)
4^c	13.60 (0.11)	-0.61 (0.10)	0.59 (0.16)

Standard errors are given in parentheses. ^aChloroform-d₁ solutions; ^bacetone-d₆ solutions; ^cdimethylsulfoxide-d₆ solutions.

TABLE 3

 n J(C,C) Coupling Constants (Hz) in ^{13}C Labeled Molecules.

atom	C-1	C-2	C-3	C-4
n ^c	1	2	3	4
molecule	J(C,C)			
1 ^b	52.89 (0.03)	4.03 (0.01)	4.57 (0.01)	1.13 (0.01)
2 ^a	72.46 (0.03)	2.71 (0.02)	4.53 (0.01)	0.94 (0.03)
2 ^b	72.19 (0.03)	2.55 (0.01)	4.49 (0.01)	1.00 (0.03)
2 ^d	72.21 (0.04)	2.51 (0.04)	4.51 (0.04)	0.99 (0.04)
2 ^c	71.36 (0.04)	2.59 (0.01)	4.38 (0.02)	1.02 (0.03)
3 ^b	C-1 52.36 (0.07)	2.92 (0.02)	3.98 (0.01)	1.04 (0.01)
	CH ₃ 42.87 (0.06)			
4 ^a	54.85 (0.04)	2.75 (0.02)	4.03 (0.03)	1.02 (0.04)
4 ^b	54.70 (0.04)	2.72 (0.01)	4.01 (0.01)	1.01 (0.02)
4 ^d	54.67 (0.06)	2.71 (0.03)	4.01 (0.02)	1.03 (0.03)
4 ^c	54.58 (0.03)	2.77 (0.01)	4.00 (0.01)	1.02 (0.02)

Standard errors are given in parentheses. ^aChloroform-d₁ solutions, 75.4 MHz;
^bacetone-d₆ solutions, 75.4 MHz; ^cdimethylsulfoxide-d₆ solutions, 75.4 MHz;
^dacetone-d₆ solutions, 125.7 MHz; ^cn is the number of intervening bonds between
two coupled carbon atoms.

Carbon-carbon spin-spin coupling constants were measured at 75.4 and 125.7 MHz (Table 3) for all molecules but at much higher level of accuracy than reported previously. Our data on J(C,C) in **2** are somewhat different than those reported by Ihrig and Marshall¹² where solvent was not mentioned, and are very close to those reported for **1**, **3** and **4** by Hansen et al¹³.

The evident differences in 1 J(C,C) for **2** (see Table 3) on going from CDCl₃ to DMSO-d₆ are attributed to changes in hydrogen bond structure in solution, since

both polar solvents, acetone-d₆ and DMSO-d₆, can participate in the formation of a hydrogen bond with **2**.

It is known that ²J(C,C) depends on bond angles, while ³J(C,C) depends on the dihedral angle¹³. Therefore differences for ²J(C,C) and ³J(C,C) in **1**, **2**, **3** and **4** (Table 3) are due to different geometries of these molecules. By molecular modelling calculations¹⁴ we found that dihedral angles between the carbonyl group and phenyl ring are 1° and 34° for **2**-dimer and **4**, respectively. These results are in agreement with nearly planar (1.5°) conformation of **2** and dihedral angle of 30–40° in **4**, as determined by experimental and theoretical methods⁷. For **3**, the measurements of the dihedral angle using different methods suggest slight deviations from planarity^{15,16}, while **1** is planar. Therefore, the data in Table 3 confirm the dependence of ³J(C,C) on molecular conformation since ³J(C,C) in planar **1** and almost planar **2** have close values of 4.57 and 4.50 Hz, respectively, but significantly different constants are observed for nonplanar **3** (3.98 Hz) and **4** (4.01 Hz). Origin of different value of ⁴J(C,C) in **1** in comparison with other molecules is not clear.

In conclusion, one can state that both ¹³C isotope effects and ¹³C-¹³C coupling constants are very sensitive to structural parameters of a molecule. On the other hand, both isotope effects and coupling constants are moderately solvent dependent.

ACKNOWLEDGEMENTS

This work was supported by the Ministry of Science and Technology of the Republic of Croatia (Project No. 1-07-139). The authors would like to thank Dr. E. D. Becker, NIDDK/NIH, Bethesda, MD, USA for the use of a Varian VXR-500 S NMR spectrometer and Dr. S. I. Macura, Mayo Foundation, Rochester, MN, USA for the use of a molecular modelling software.

REFERENCES

1. Hansen P. E. Isotope Effects in Nuclear shielding. *Progr. NMR Spectrosc.* 1988; 20: 207-255.
2. Jokisaari J. ^{13}C - ^{13}C Spin-Spin Coupling Constants and ^{13}C Isotope Effects on ^{13}C Chemical Shifts in some 4-Membered Rings. *Org. Magn. Reson.* 1978; 11: 157-159.
3. Stöcker M. ^{13}C Isotope Effects on Carbon-13 Chemical Shifts in some Small-ring Compounds. *J. Chem. Res.* 1982; (S) 124-125.
4. Hansen P. E., Led J. J. CH, CD, CC and HH Coupling Constants in Isotopically Enriched Cyclobutene. *Org. Magn. Reson.* 1981; 15: 288-293.
5. Risley J. M., Van Etten R. L., Uncuta C., Balaban A. T. ^{18}O Isotope Effect in Carbon-13 Nuclear Magnetic Resonance Spectroscopy. Oxygen Exchange of 2,4,6-Trimethylpyrylium Cation. *J. Am. Chem. Soc.* 1984; 106: 7836-7840.
6. Srzić D., Martinović S., Vujanić P., Meić Z. Randomization in the Fragmentation of Benzophenone. *Rapid Commun. Mass Spectrom.* 1993; 7: 163-166.
7. Bruno G., Randaccio L. A Refinement of the Benzoic Acid Structure at room Temperature. *Acta Cryst.* 1980; B 36: 1711-1712.
Abraham R. J., Haworth I. S. Conformational Analysis. Part 12. ^{1}A

Theoretical and Lanthanide-induced Shift (LIS) Investigation of Conformation of Benzophenone and 3,4'-Dichloro-benzophenone.
J. Chem. Soc. Perkin Trans. II 1988; 1429-1437.

8. Meić Z., Vujanić P., Vikić-Topić D. to be published.

9. Berger S. Chemical Models for Deuterium Isotope Effects in ^{13}C and ^{19}F NMR. *NMR Basic Principles and Progress*. Berlin: Vol. 22, Springer-Verlag, 1990.

10. Jameson C. J. The Dynamic and Electronic Factors in Isotope Effects on NMR Parameters. *Isotopes in the Physical and Biomedical Science*, Amsterdam: Elsevier Science Publisher: Vol. 2, 1991.

11. Vikić-Topić D., Khetrapal C. L., Christie G. R., Sandor P., Meić Z. On the Models for Deuterium Long Range Isotope Effects in ^{13}C NMR Spectroscopy. *J. Math. Chem.* 1991; 8: 185-192.

12. Ihrig A. M., Marshall J. L. Carbon Magnetic Resonance Studies of Enriched Compounds. Carbon-13-carbon-13 Coupling Constants of ^{13}C -7 labeled Monosubstituted Benzene Derivatives.
J. Am. Chem. Soc. 1972; 94: 1756-1757.

13. Hansen P. E., Poulsen O. K., Berg A. ^{13}C , ^{13}C Coupling Constants and ^{13}C Chemical Shifts of Aromatic Carbonyl Compounds. Effects of *ortho*- and *peri*-Interactions Involving the Carbonyl Substituent.
Org. Magn. Reson. 1977; 9: 649-658.

14. The results published were generated using the program CHARM m22 and Quanta 4.0. These programs have been developed by "Molecular Simulation Inc."

15. Tamimoto V., Kobayashi H., Nakagura S. and Saito Y. The Crystal Structure of Acetophenone at 154° K.
Acta Cryst. 1973; B29: 1822-1826.

16. Durig J. R., Bist H. D., Furić K., Qin J. and Little J. S. Far Infrared Spectra and Barriers to Internal Rotation of Benzaldehyde, Benzoyl Fluoride, Benzoyl Chloride and Acetophenone.
J. Mol. Struct. 1985; 129: 45-56.

Date Received: October 14, 1994
Date Accepted: November 24, 1994